Research Projects

Text

FH Aachen UAS is the only university of applied sciences in North Rhine-Westphalia that can draw on proven teaching and research expertise in the two high-tech areas of the aerospace industry and the automotive industry.


The Department of Aerospace Engineering takes advantage of this and leads the competence platform "Synergetic Automotive & Aerospace Engineering", an interdisciplinary fusion of several program focuses from several departments of the FH-Aachen.

It is a (founding) member of various regional as well as North Rhine-Westphalian research networks.

In the field of aeronautical engineering we have the following research foci:

for the field of aircraft and engine construction:

  • Innovative aircraft configurations
  • Autonomoums flight of manned and unmanned aircraft
  • Pilot and passenger safety
  • Environmental monitoring with aircraft
  • Alternative fuels in aviation
  • Electric and hybrid drive systems
  • Low-nitrogen-oxide hydrogen and synthesis gas combustion in gas turbines
  • Aviation systems certificates

Details on the research networks can be found on the page Research and Projects.

Further information on our research:

DEFANA

DEFANA

Ducted Electric Fans for Novel
Aircraft (DEFANA)


Project Description

One challenge during the introduction of airborne urban mobility concepts is the aerodynamic and structural-mechanical design of the rotor-shell system for electric motors. These have different performance characteristics compared to internal combustion engines. To achieve the highest possible efficiency, the drive system must be adapted to this circumstance. Since little experience and hardly any design guidelines for the design of such systems are available, this research project will provide added value to the relevant industry.

Project Goal

In order to reduce the high development costs for shrouded propellers (ducted fans), a design methodology for the preliminary design of electrically operated shrouded rotor systems is to be developed. This methodology takes into account aerodynamic, structural mechanical and aeroacoustic aspects as well as their coupling with each other.

Project Data

Duration
02/2019 to 01/2023

Project Type
Research Project

Grantor
Bundesministerium für Bildung und Forschung

Bearer
Verein Deutscher Ingenieure

Funding FH Aachen UAS
640.000 €

Project Lead

Prof. Dr.-Ing. Carsten Braun
Gebäude Hohenstaufenallee 6
Raum O2114
Hohenstaufenallee 6
52064 Aachen
c.braun(at)fh-aachen.de
T: +49.241.6009 52374

Supervision

Prof. Dr.-Ing. Frank Janser
Gebäude Hohenstaufenallee 6
Raum O3102
Hohenstaufenallee 6
52064 Aachen
janser(at)fh-aachen.de
T: +49.241.6009 52354

Staff

Felix Möhren, M.Sc.
Gebäude AMA
Raum O3317
Aachener-und-Münchener Allee 1
52074 Aachen
moehren(at)fh-aachen.de
T: +49.241.6009 52608

Ole Bergmann, M.Sc.
Gebäude HOH
Raum O3102
Hohenstaufenallee 6
52064 Aachen
bergmann(at)fh-aachen.de
T: +49.241.6009 52308
 

Partner

Helix Carbon GmbH

RWTH Aachen University
(Institut für Strukturmechanik und Leichtbau,
Institut für Luft- und Raumfahrtsysteme)

EASA-SC08 - Aircraft Noise II

EASA-SC08 - Aircraft Noise II

EASA-SC08 - Aircraft Noise II

Environmental Consultancy Support on technical issues associated with aircraft noise

Project Description

A strong focus of current research is on air cabs and their operation in urban areas. Technical and operational differences compared to conventional aircraft justify a review of the applicable certification guidelines. Especially for acoustic emissions, an appropriate assessment scheme has to be defined, which quantifies the disturbing impact of noise emissions from air cabs on the population. For this purpose, the applicability of existing assessment schemes for air cabs is evaluated by means of psychoacoustic tests and their statistical evaluations.

Project Goal

In order to define an appropriate and suitable certification regarding the acoustic emission of air cabs, existing acoustic evaluation schemes for air cabs will be evaluated. For this purpose, results from psychoacoustic tests with test persons will be taken into account..

Project Data

Duration
12/2020 to 03/2021

Project Type
Cooperation Project

Grantor
Netherlands Aerospace Centre (NLR)

Bearer
European Aviation Safety Agency (EASA)

Funding FH Aachen UAS
-

Project Lead
& Supervision

Prof. Dr.-Ing. Carsten Braun
Gebäude Hohenstaufenallee 6
Raum O2114
Hohenstaufenallee 6
52064 Aachen
c.braun(at)fh-aachen.de
T: +49.241.6009 52374

EASA-SC08 Staff

Staff

Nils Böhnisch
Gebäude Hohenstaufenallee
Raum O1108
Hohenstaufenallee 6
52064 Aachen
boehnisch(at)fh-aachen.de
T: +49.241.6009 52616

EASA-SC08 Partner

Partner

NLR
(Netherlands Aerospace
Engineering)

EDARIT

EDARIT

Electrical Drive and Regeneration In flight Tests (EDARIT)


Project Description

Electric drives in aircraft can make a significant contribution to the successful implementation of "Flight-path 2050". Hybrid technologies and the use of range extenders can be used to increase the range, which is currently far from sufficient. Furthermore, with a recuperative propulsion system, descending flights can be used for energy recovery (according to estimates up to 10%). This potential depends on the flight mission on the one hand, but also on the efficiency of the recuperation of the propeller on the other hand.

Propulsion propellers are not designed for recuperation. Electric propulsion systems have been little studied in flight.

The overall objective of the project is to obtain reliable data for the use of electric drives in aircraft, so that an energy- and noise-emission-optimized propeller and drive design is possible. This will enable larger aircraft to be equipped more efficiently with electric drives.

These are to be investigated and subsequently optimized in the drive and recuperation mode both in the low-noise wind tunnel at RWTH and with a "flying electric aircraft engine test rig" in flight experiments (up to 6000m flight altitude). Different propellers will be developed, measured to quantify the efficiency in propulsion and recuperation mode and their psychoacoustic effect, and development notes for propellers will be given.


Project Goals

  • Investigate various flight missions for potential energy savings.
  • Aerodynamic design of the propeller
  • Design of the variable pitch propeller governor
  • Preparation of the tests both on the test bench and in the flight test
  • Verification and approval of the test facilities for the flight test
  • Integration of the test equipment into the aircraft and for the test bench trials
  • Overall risk management
  • Carrying out the scientific laboratory and flight tests
  • Scientific evaluation of the tests and elaboration of design and system recommendations for the use of electric drive and recuperation concepts under energetic and risk-related aspects
  • Presentation and publication of scientific findings in publications and at international congresses

 

Project Data

Duration
01/2019 to 03/2022

Project Type
Research Project

Grantor
Bundesministerium für Wirtschaft und Energie

Project Lead
& Supervision

Prof. Dr.-Ing. Peter Dahmann
Aachener-und-Münchener-Allee 1
52064 Aachen
Raum O1112/1103
dahmann(at)fh-aachen.de
T: +49.241.6009 52360

Staff

Jona Keimer, M.Sc.
Gebäude AMA
Raum O3334
Aachener-und-Münchener Allee 1
52074 Aachen
j.keimer(at)fh-aachen.de
T: +49.241.6009 52615

Joscha Mayntz, M.Sc.
Gebäude AMA
Raum O3334
Aachener-und-Münchener Allee 1
52074 Aachen
mayntz(at)fh-aachen.de
T: +49.241.6009 52614

Partner

RWTH Aachen University

Helix Carbon GmbH

Geiger Engineering

Stemme Projekt

Deutscher Aero Club

SkyCab

SkyCab II - Science. Not Fiction

Project Description

An interdisciplinary team explores possibilities for tomorrow's mobility. An Urban Air Mobility concept for the pilot area NRW/Rhein-Mass is highlighted in the most important points. The holistic project approach encompasses much more than the pure design of an air cab, but additionally considers aspects such as business models, infrastructure, user acceptance, commuter flows, personas, intermodal mobility, digitalization and much more. The project looks far beyond the horizons of the classic engineer.

Project Goal

The project objective is to derive and evaluate an intermodal mobility concept taking into account technological, economic and operational constraints for the pilot region NRW/Rhein-Maas and to develop a flight cab suitable for this purpose up to the technology maturity level of the preliminary design.


More information on the project is to be found here

Information on the precursor project SkyCab I can be found here

Project Data

Duration
14.02.2020 to 31.12.2022

Project Type
Research Project

Bearer
BAV

Grantor
Bundesministerium für Verkehr und digitale Infrastruktur

Funding FH Aachen UAS
1.379.389,86 €

Project Lead

(Leader of the Consortium)

Prof. Dr.-Ing. Carsten Braun
Gebäude Hohenstaufenallee 6
Raum O2114
Hohenstaufenallee 6
52064 Aachen
c.braun(at)fh-aachen.de
T: +49.241.6009 52374

Supervision

SkyCab Supervision

Dpt. 2 - Civil Engineering

Prof. Dr.-Ing. Christoph Hebel
Raum 01210
Bayernallee 9
52066 Aachen
hebel(at)fh-aachen.de
T: +49.241.6009 51123

Dpt. 5 - Elec. Engineering and
Information Technology

Prof. Dr.-Ing. Thomas Ritz
Gebäude H
Raum H 213
Eupener Str. 70
52066 Aachen
ritz(at)fh-aachen.de
T: +49.241.6009 52136

Dpt. 6 - Aerospace Engineering

Prof. Dipl.-Ing. Hans Kemper
Gebäude AMA
Raum AMA 305
Aachener-und Münchener Allee 6
52064 Aachen
h.kemper(at)fh-aachen.de
T: +49.241.6009 52485

Prof. Dr.-Ing. Thilo Röth
Gebäude Boxgraben 98-100
Raum O0205
Boxgraben 100
52064 Aachen
roeth(at)fh-aachen.de
T: +49.241.6009 52940

Staff

Dpt. 2 - Civil Engineering

Elisabeth Köppen
FH Aachen
Bayernallee 9
52066 Aachen
koeppen(at)fh-aachen.de

 

Torsten Merkens
Raum 01215
FH Aachen
Bayernallee 9
52066 Aachen
merkens@fh-aachen.de
T: +49.241.6009 51170
F: +49.241.6009 51112

Dpt. 5 - Elec. Engineering and
Information Technology

David Erberich, B.Sc.
Gebäude H
Raum H 212
Eupener Str. 70
52066 Aachen
erberich@fh-aachen.de
T: +49.241.6009 52251

Till Franzke, M.Eng.
Gebäude H
Raum H 211
Eupener Str. 70
52066 Aachen
franzke(at)fh-aachen.de
T: +49.241.6009 52195

Philipp Tambornino
Gebäude H
Eupener Str. 70
52066 Aachen
tambornino(at)fh-aachen.de

Dpt. 6 - Aerospace Engineering

Lukas Gerber
Gebäude HOH
Hohenstaufenallee 6
52064 Aachen
l.gerber@fh-aachen.de
T: +49.241.6009 52395

Lukas Laarmann
Gebäude Boxgraben 98-100
Raum O0203
Boxgraben 98
52064 Aachen
laarmann(at)fh-aachen.de
T: +49.241.6009 52933

Andreas Thoma, M.Sc.
Gebäude AMA
Raum O3317
Aachener-und-Münchener Allee 1
52074 Aachen
a.thoma(at)fh-aachen.de
T: +49.241.6009 52609

Partner

Consortium Partners

  • Braunwanger GmbH, Aachen
  • FEV Vehicle GmbH, Aachen
  • Flughafengesellschaft Mönchengladbach GmbH
  • MOQO Digital Mobility Solutions GmbH, Aachen
  • OECC Concepts & Consulting, München
  • RLE INTERNATIONAL Produktentwicklungsgesellschaft mbH, Overath
  • Stadt Aachen

Associated Partners

  • FEV Consulting, Aachen
  • Nahverkehr Rheinland GmbH, Köln
  • Rheinland Air Service GmbH, Mönchengladbach
  • Stadt Mönchengladbach

Stemme

Forschungsflugzeug Stemme VTX-10

Betreuende Professoren: Prof. Dr.-Ing. Peter Dahmann

Wiss. Mitarbeiter:

Zuwendungsgeber:

Hydrogen combustion in gas turbines

Micromix

Hydrogen combustion in
Gas turbines

Low-nitrogen oxide combustion of hydrogen in gas turbines

Project Description

Hydrogen, produced by electrolysis, can be used to store surplus renewable energy. Conversion back into electrical energy in gas turbines is CO2-free and thus climate-friendly. The only climate-impacting emissions are nitrogen oxides (NOx). Due to the high reactivity of hydrogen, established combustion chamber technologies are often not suitable for the combustion of pure hydrogen. Critical factors here are the high flame velocity of the hydrogen, which can lead to flashbacks and damage to the gas turbine, as well as sharply increasing NOx emissions. With established technologies, these problems can only be circumvented by a low H2 content in the fuel gas or by efficiency-reducing dilution using nitrogen or steam.

Project Goal

The Micromix (MMX) combustion process was developed as part of the many years of research activities at the FH Aachen. With the help of this process, it is possible to significantly reduce the resulting nitrogen oxide emissions and to burn hydrogen with a high degree of operational reliability. This is made possible by the use of many miniaturized flames and optimized mixing of fuel gas and air in the combustion chamber of the gas turbine. In this way, the residence time of the molecules in the hot flame regions is significantly reduced, thus reducing the formation of nitrogen oxides.    

For the application-oriented research typical at universities of applied sciences, the overall system of gas turbine and combustor is considered in an interdisciplinary way, Fig. 1. A special focus of the current MMX research is here the direct interaction between experimental investigations at the atmospheric combustor test rig of the FH-Aachen and combustion and flow simulations. The latter are used in the context of extensive numerical parameter studies for the development of optimized and flexibly integrable combustion chamber concepts which are validated by experimental analysis of the combustion characteristics.

This enables the scaling of applications for small to large gas turbines in both the aerospace and power generating industries.

Project Lead

Prof. Dr.-Ing. Harald Funke
Gebäude Hohenstaufenallee
Raum O3106
Hohenstaufenallee 6
52064 Aachen
funke(at)fh-aachen.de
T: +49.241.6009 52387

Staff

Dr. Jan Keinz 
Fachbereich 6 - Luft- und Raumfahrttechnik
FH Aachen
Hohenstaufenallee 6
52064 Aachen
keinz(at)fh-aachen.de
T: +49 241 6009-52601

Dr. Nils Beckmann, M.Sc.
Fachbereich 6 - Luft- und Raumfahrttechnik
FH Aachen
Hohenstaufenallee 6
52064 Aachen
N.beckmann(at)fh-aachen.de
T: +49 (0)241/6009-52808

EASA-SC06

EASA-SC06

EASA-SC06

Environmental Consultancy Support on technical issues associated with aircraft noise

Project Description

A strong focus of current research is on air cabs and their operation in urban areas. Technical and operational differences compared to conventional aircraft justify a review of the applicable certification guidelines. Especially for acoustic emissions, an appropriate assessment scheme has to be defined, which quantifies the disturbing impact of noise emissions from air cabs on the population. For this purpose, the applicability of existing assessment schemes for air cabs is evaluated by means of psychoacoustic tests and their statistical evaluations.

Project Goal

In order to define an appropriate and suitable certification regarding the acoustic emission of air cabs, existing acoustic evaluation schemes for air cabs will be evaluated. For this purpose, results from psychoacoustic tests with test persons will be taken into account.

Project Data

Duration
02/2020 to 11/2020

Project Type
Cooperation Project

Grantor
European Aviation Safety Agency (EASA)

Bearer
European Aviation Safety Agency (EASA)

Funding FH Aachen UAS
40.500 €

Project Lead
& Supervision

Prof. Dr.-Ing. Carsten Braun
Gebäude Hohenstaufenallee 6
Raum O2114
Hohenstaufenallee 6
52064 Aachen
c.braun(at)fh-aachen.de
T: +49.241.6009 52374

EASA-SC06 Staff

Staff

Nils Böhnisch
Gebäude Hohenstaufenallee
Raum O1108
Hohenstaufenallee 6
52064 Aachen
boehnisch(at)fh-aachen.de
T: +49.241.6009 52616

EASA-SC06 Partner

Partner

NLR
(Netherlands Aerospace
Engineering)

E-TAKE-OFF

E-TAKE-OFF - Fliegen 2020

E-TAKE-OFF - Fliegen 2020

Umweltfreundlichere Technologie für Kleinflugzeuge

Mal eben mit dem Flugzeug in die nächste Stadt fliegen, wenn sich auf den Straßen der Verkehr wieder staut oder die Bahn Verspätung hat - als "Green Air Taxi" sind Kleinflugzeuge schon längst Teil neuer Mobilitätskonzepte, wie sie von großen Forschungseinrichtungen wie der NASA oder dem DLR angestrebt werden. Vor allem im inter-urbanen Raum könnten sie umweltfreundlichere und schnellere Alternativen zu den bestehenden Transportmitteln und -wegen sein. Das Interesse an Kleinflugzeugen, die bis zu sechs Personen transportieren können, wächst stetig.

Bis es soweit ist, ist allerdings noch einiges an Forschungsarbeit notwendig, denn die Entwicklung umweltschonender Flugzeuge stellt eine große Herausforderung dar. Seit über 40 Jahren hat sich die bisher verwendete Kolbentechnologie nicht verändert und konventionelle Flugzeuge dominieren nach wie vor im Luftraum. Die Reduzierung des Treibstoffverbrauchs, der CO2-Emissionen, der giftigen und umweltschädigenden Verbrennungsgase sowie die Reduzierung des Lärms sind notwendig, wenn wir auch in Zukunft weiter fliegen wollen.

Es gilt als allgemein anerkannt, dass neue Mobilitätskonzepte nur durch den Einsatz hybrid-elektrischer Antriebssysteme in Verbindung mit neuen Flugzeugkonfigurationen zu realisieren sind. Ziel des interdisziplinären Forschungsvorhabens "E-TAKE-OFF - Fliegen 2020" der FH Aachen ist es daher, die Grundlagen für einen neuen Forschungsschwerpunkt "Fliegen mit alternativen Antrieben" zu schaffen. Ein Forschungsschwerpunkt auf diesem Gebiet birgt langfristiges Potenzial, erstmalig würde mit dem Projekt ein ganzheitliches Konzept für Kleinflugzeuge mit alternativen Antriebssystemen geschaffen. Dazu arbeiten Forscherinnen und Forscher aus den Bereichen Luftfahrzeugtechnik und Flugzeugbau (Prof. Braun, Prof. Dahmann), Verbrennungsmotoren (Prof. Esch), alternative Antriebstechnik (Prof. Kemper), und Elektrotechnik (Prof. Bragard) zusammen.

 

Projektleitung

Prof. Dr.-Ing. Carsten Braun
Hohenstaufenallee 6
52064 Aachen
Room O2114
c.braun(at)fh-aachen.de
T: +49.241.6009 52374
F: +49.241.6009 52680

Projektpartner

Prof. Dr.-Ing. Michael Bragard
Eupener Str. 70
52066 Aachen
Room E 132
bragard(at)fh-aachen.de
T: +.49.241 6009 52149
F: +.49.241 6009 52190
Prof. Dr.-Ing. Peter Dahmann
Aachener-und-Münchener-Allee 1
52064 Aachen
Room Webex Onli
dahmann(at)fh-aachen.de
T: +49.241.6009 52400
Prof. Dr.-Ing. Thomas Esch
Hohenstaufenallee 6
52064 Aachen
Room O3107
esch(at)fh-aachen.de
T: +49.241.6009 52369
F: +49.241.6009 52680
Prof. Dipl.-Ing. Hans Kemper
Hohenstaufenallee 6
52064 Aachen
Room AM 305
h.kemper(at)fh-aachen.de
T: +49.241.6009 52485
F: +49.241.6009 52489

Mitarbeitende

Dr. Felix Finger M.Sc.
Hohenstaufenallee 6
52064 Aachen
Room O2110
f.finger(at)fh-aachen.de
T: +49.241.6009 52364
F: +49.241.6009 52680

Förder-Details

Förderlinie:

FH-Struktur 2017

Projektvolumen:

300.000 €

PhoenAIX

PhoenAIX

PhoenAIX

The modular Transport Drone


Project Description

The rapid development of the market for unmanned aerial vehicles worldwide offers great potential for growth and value creation. Unmanned aerial vehicles can be designed much more cheaply and efficiently than manned solutions. Researchers from Department 6 are therefore working on a large vertical-takeoff transport drone The aircraft, christened "PhoenAIX," is being developed by Falk Götten and Felix Finger as part of an ERDF grant. A hybrid approach is being pursued, i.e. a mixture of aircraft and multicopter Thus, no runways are needed for take-off and landing.

Project Goal

The prototype of the transport drone will be developed by summer 2020. The "PhoenAIX" aircraft weighs 25 kg, can take off and land vertically if desired, and transports - depending on the configuration - payloads between 3 and 6 kg, or a volume of 31.5 liters over a distance of more than 125 km.

More information is to be found here

Project Data

Duration
03/2019 to11/2020

Project Type
Development Project

Funding Code
EFRE-0400188

Grantor
Land NRW und EU (EFRE Projekt)

Bearer
Projektträger Jülich (PTJ)

Funding FH Aachen UAS
291.700 €

Project Lead
& Supervision

Prof. Dr.-Ing. Carsten Braun
Gebäude Hohenstaufenallee 6
Raum O2114
Hohenstaufenallee 6
52064 Aachen
c.braun(at)fh-aachen.de
T: +49.241.6009 52374

Mitarbeitende

Felix Finger, M.Sc.
Gebäude Hohenstaufenallee 6
Raum O2110
Hohenstaufenallee 6
52064 Aachen
f.finger(at)fh-aachen.de
T: +49.241.6009 52364

Falk Götten, M.Sc.
Gebäude
Raum O2117
Hohenstaufenallee 6
52064 Aachen
goetten(at)fh-aachen.de
T: +49.241.6009 52868

Partner

Up2Tec Prototyping

RescueCopter

RescueCopter

RescueCopter

Supporting rescue operations by transporting medical equipment to initiate life-saving measures by first responders under telemedicine guidance from the telephone physician.

Project Data

Duration
07/2019 to 12/2019

Project Type
Development Project

Bearer
BMVI

Funding FH Aachen UAS
33.251 €

Project Lead

Prof. Dr.-Ing. Peter Dahmann
Aachener-und-Münchener-Allee 1
52064 Aachen
Raum O1112/1103
dahmann(at)fh-aachen.de
T: +49.241.6009 52360

Partner

Stadt Aachen

P3 Group

Further projects (more detailed information follows)

  • DAAD AE DD
  • EC-MKT
  • E-SAT
  • FiberRadar
  • FlyLPG
  • HTCDTTT
  • MOSES
  • Wingpod Stemme