Fachgebiet Raumfahrttechnik

Forschung und Forschungsschwerpunkte

Im Fachgebiet Raumfahrttechnik haben wir die folgenden Forschungsschwerpunkte:

  • Planetare und orbitale Exploration (Systems Engineerig, Missionsoptimierung, Entwicklung von Raumfahrtnutzlasten und Komponenten, bemannte Raumfahrt)
  • Kopplung von Know-How in den Bereichen bionische, additiv gefertige Strukturen, adaptive Optiken
    und Thermalkontrollverfahren sowie neuronale Lage- und Bahnregelungssysteme
  • Unterstützung von Partnern und Kunden durch Expertise in der Auslegung von Raumfahrt-
    missionen und -komponenten wie auch deren Analyse und Qualifizierung durch Versuche

 

Kompetenzfelder unserer Forschung und Entwicklung sind:

  • Entwicklung und Durchführung von Kleinstsatellitenmissionen
  • Struktur- und Thermalauslegung
  • Missionsdesign und Bahnoptimierung
  • Eigener Raumflugbetrieb (Bodenstation im Amateurfunkbereich)
  • Qualifikation von Raumfahrtkomponenten und Systemen (Thermal-Vakuum-Kammern, Shaker)
  • Vorentwicklung und Tests planetarer Sonden
  • Vorentwicklung und Tests von Lebenserhaltungssystemen
  • Simulation planetarer Umgebungen (Planetensimulationskammer)
  • Experimente auf Höhenforschungsraketen

Für die Bereiche Struktur und Themal werden klassische Entwicklungs-werkzeuge der Industrie genutzt (NASTRAN & ESATAN). Entsprechende Testanlagen stehen in Form von Shakern und Thermalvakuumkammern (inkl. Sonnensimulator mit Kinematik-Modul) zur Verfügung.

Weitere Details zu den Forschungsnetzwerken finden Sie unter der Rubrik
Forschung und Projekte.

Projekte

CubeSat

Am Fachbereich wurden bereits zwei Kleinstsatelliten nach dem CubeSat-Standard gebaut und in den Orbit geschossen. Der zweite davon, COMPASS-2, war ein 3U-CubeSat, der mit einem Widerstandsegel zur Vermeidung von Weltraumschrott und innovativen flexiblen Solarzellen für die In-Orbit-Demonstration ausgestattet war. Der Fachbereich betreibt eine eigene Bodenstation für den Betrieb und zur Unterstützung von CubeSat-Missionen im Amateurfunkbereich. Hier bestehen viele internationale Kooperationen sowie eine Kooperation mit der ESA.

Zur Projektseite

KRONOS

Kaltgasbasierter DemonstratoR mit ONboard-gesteuertem Operations-System (KRONOS)

KRONOS legt die Grundlage für formationsfliegende, kooperative optische Nutzlasten.

In einer orbitalen 3D Simulationsumgebung werden interdisziplinäre Auslegungsmethoden von Satellitensubsystemen (Antrieb, Lageregelung, Energieversorgung, Kommunikation) eingebettet.

Die Entwicklung von einem 2D Kaltgasdemonstrator ermöglicht es Hardwarelösungen zu verifizieren (Antrieb, Sensorik, Steuerung) sowie den Lageregelungsteil der Simulation zu validieren. Die gewählten Lageregelungskonzepte sollen anschließend mittels eines 3D Demonstrators auf Parabelflügen demonstriert werden.

Für zukünftige formationsfliegende, kooperative optische Nutzlasten sind sehr präzise Lageregelungssysteme erforderlich. Die notwendigen nummerischen Auslegungsverfahren werden innerhalb von KRONOS entwickelt und an 2D und 3D Demonstratoren verifiziert.

Zur Projektseite

Projektdaten

Laufzeit
04/2019 bis 03/2021

Projekttyp
Studentisches Projekt

Zuwendungsgeber
K1 - Senatskommission für Studium und Lehre

Träger
FH Aachen

Fördersumme FH Aachen
10.000 €

Projektleitung

Tom Theisen

Marcus Mohren

Betreuung

Prof. Dr.-Ing. Markus Czupalla
Hohenstaufenallee 6
52064 Aachen
Raum O2101
czupalla(at)fh-aachen.de
T: +49.241.6009 52362
F: +49.241.6009 52680

DAISY

Closed Agricultural Life Support System Demonstrator (DAISY)

Im Forschungsprojekt DAISY wird eine Hardware/Software Testumgebung für hybride Lebenserhaltungssysteme (LSS) für zukünftige bemannte Raumfahrtmissionen entwickelt.

Hierfür wird eine kleine geschlossene Pflanzenwachstumskammer entwickelt (1m²) in welcher Wasserversorgung, Temperatur, Druck, Beleuchtung und Gaszusammensetzung kontrolliert werden können.

Die Kammer wird zunächst genutzt um Pflanzen als LSS Komponenten zu charakterisieren. Im zweiten Schritt wird sie mit einer LSS Simulation gekoppelt um bemannte Raumfahrtmissionen mit Pflanzen als „hardware in the loop“ simulieren zu können. Die sonstigen LSS Bestandteile werden nummerisch abgebildet.

Ziele sind die Charakterisierung von Pflanzen als Komponenten von Lebenserhaltungssystemen sowie die Validierung solcher geschlossener LSS für bemannte Raumfahrtmissionen.

 

Projektdaten

Laufzeit
Seit April 2019

Projekttyp
Forschungsprojekt

Zuwendungsgeber
K2 - Senatskommission für Forschung und Entwicklung

Projektträger
FH Aachen

Fördersumme FH Aachen
20.000 €

Projektleitung

Ilse Holbeck, B. Eng.

Betreuung

Prof. Dr.-Ing. Markus Czupalla
Hohenstaufenallee 6
52064 Aachen
Raum O2101
czupalla(at)fh-aachen.de
T: +49.241.6009 52362
F: +49.241.6009 52680

Partner

DLR Köln

TU München

ITS

 

Infused Thermal Solutions beinhaltet eine Methode zur passiven Thermalkontrolle um strukturelle Komponenten ohne den Einsatz von aktiven Heiz- und Kühlsystemen thermisch zu stabilisieren. Das ITS-Konzept kombiniert die Eigenschaften von Latentwärmespeicher (Phase Change Material - PCM) mit additiven Fertigungsverfahren. Dadurch entsteht eine Integralstruktur, ohne zusätzlich benötigte Komponenten. Der Latentwärmespeicher wird in die Hohlräume additiv gefertigten Struktur eingebettet. Dies kann die Systemmasse verringern oder durch geringe relative Zusatzmasse das System thermisch signifikant stabilisieren.

Das Projektziel ist die Fertigung und Qualifizierung eines ITS-Demonstrators, verifiziert durch Struktur- und Thermalanalysen. Zusätzlich wird die Machbarkeit der additiven Fertigung doppelwandiger, gasdichter, komplex geformter Strukturen mit integrierter Gitterstützstruktur qualifiziert.

Levity

 

Die Entwicklung des Satelliten zielt auf Kosteneffizienz durch Standardisierung und Nutzen bereits verfügbarer Komponenten ab. Zusammen mit einem elektrischen Antrieb soll die Plattform eine universelle Infrastruktur für kommende Kleinsatellitengenerationen insbesondere im lunaren Bereich bieten.

Levity entwirft einen Kleinsatelliten, der einerseits den kommerziellen erdnahen Bereich bedient und andererseits zum Mond fliegen kann. Ab 2022 bietet die europäische Raumfahrt erstmals eine kommerzielle Möglichkeit für Kleinsatelliten den Geostationären Orbit zu erreichen. Levity sieht vor als sekundäre Nutzlast auf der Ariane 6 zu starten, um nach erfolgreicher Abtrennung von der Rakete von der Geostationären Umlaufbahn mittels eines elektrischen Antriebes zum Mond zu beschleunigen. Dadurch entsteht die erste kommerzielle Infrastruktur zum Mond für Kleinsatelliten.

Zur Homepage von Levity Space Systems geht es hier

 

Weitere Projekte (detailliertere Informationen folgen)

  • CLSSC
  • MPI - ICPU
  • ORCS
  • Rosetta Landestudie
  • STERN
  • μMoon

Abgeschlossene Projekte

  • EnEx-nExT (Nacharbeiten laufen)
  • VIPER
  • EnEx
  • DragSail-CubeSat
  • COMPASS-2
  • IceMole
  • MarsMole
  • ADIOS
x